摘要:为得出拟合效果最佳的预测模型,建立了多元回归和机器学习预测模型对PM_(2.5)质量浓度进行预测。在输入气象因素的基础上,引入污染物质量浓度基础值和周期因素两类变量作为预测输入,并对4种预测模型进行对比研究。研究结果表明:对预测输入进行改进后,多元线性回归预测模型拟合优度由0.52提高至0.64,所选取的气象参数、污染物质量浓度基础值和周期因素能较好地描述PM_(2.5)质量浓度的日变化情况;与多元线性回归预测模型相比,BP
神经网络和支持向量机两种预测模型能较好地捕捉PM_(2.5)质量浓度与预测输入之间的非线性影响规律,整体拟合优度分别达0.69和0.74,预测准确度较高;支持向量机预测模型可作为PM_(2.5)质量浓度预测的首选方法。
原文链接:http://www.cqvip.com//QK/90702A/201506/667616331.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)