摘要:为提高小脑模型关节控制器(CMAC)神经网络在线学习的快速性和准确性,提出一种平衡学习的概念,并设计一种改进的CMAC学习算法.在常规的CMAC中,误差的校正值被平均地分配给所有激活存储单元,而不管这些存储单元的可信度;在改进的CMAC中,利用激活单元先前学习次数作为可信度,其误差校正值与激活单元先前学习次数的负k次方成比例.仿真结果表明,当k为一适当数值时,改进CMAC具有较快的学习速度和较高的精度,特别是在
神经网络的初始学习阶段.
原文链接:http://www.cqvip.com//QK/91549X/200412/11297735.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)