摘要:基于支持向量机和贝叶斯方法,从蛋白质一级序列出发对蛋白质同源二聚体、同源三聚体、同源四聚体、同源六聚体进行分类研究,结果表明:基于支持向量机, 采用'一对多'和'一对一'策略, 其分类总精度分别为77.36%和93.43%, 分别比基于贝叶斯协方差判别法的分类总精度50.64%提高26.72和42.79个百分点.从而说明支持向量机可用于蛋白质同源寡聚体分类,且是一种非常有效的方法.对于多类蛋白质同源寡聚体分类,基于相同的
机器学习方法(如支持向量机),采用'一对一'策略比'一对多'效果好.同时亦表明蛋白质同源寡聚体一级序列包含四级结构信息.
原文链接:http://www.cqvip.com//QK/94860X/200306/8858112.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)