全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
485 0
2018-01-09
摘要:随着近几年互联网的发展,网络评论数量正日益增加。对这些网络评论进行挖掘和分析,识别出其中的情感倾向,可以给用户、企业、ZF提供重要的决策支持。采用机器学习方法中的朴素贝叶斯和支持向量机分类模型,根据不同的停用词表、特征选择方法、特征加权方法的组合,对中文文本倾向性分类进行了研究。结论表明,采用保留情感信息相关词性的停用词表,以文档频率为特征选择方法,并应用基于绝对词频的支持向量机分类模型,能取得较好的分类效果。

原文链接:http://www.cqvip.com//QK/96111A/201004/33525008.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群