全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
569 0
2018-01-11
摘要:分类问题是数据挖掘和机器学习中的一个核心问题。为了得到最大程度的分类准确率,决策树分类过程中,非常关键的是结点分裂属性的选择。常见的分裂结点属性选择方法可以分为信息熵方法、GINI系数方法等。分析了目前常见的选择分裂属性方法——基于信息熵方法的优、缺点,提出了基于卡方检验的决策树分裂属性的选择方法,用真实例子和设置模拟实验说明了文中算法的优越性。实验结果显示文中算法在分类错误率方面好于以信息熵为基础的方法。

原文链接:http://www.cqvip.com//QK/97969A/200805/27195538.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群