全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
886 0
2018-01-15
摘要:高维数据中许多特征之间互不相关或冗余,这给传统的学习算法带来了巨大的挑战。为了解决该问题,特征选择应运而生。与此同时,许多实际问题中数据存在多个视图而且数据的标签难以获取,多视图学习和半监督学习成为机器学习中的热点问题。本文研究怎样从"部分标签"的多视图数据中选择最大相关最小冗余的特征子集,提出一种基于多视图的半监督特征选择方法。为了剔除冗余和无关的特征,探索蕴含于多视图数据中的互补信息以及每个视图中不同特征之间的冗余关系,并利用少量标签数据蕴含的信息协同未标签数据同时进行特征选择。实验结果验证了本算法能够获得很好的特征选择效果及聚类效果。

原文链接:http://www.cqvip.com//QK/96163X/201501/664037897.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群