全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
729 0
2018-01-17
摘要:基于机器学习的超分辨方法是一个很有发展前景的单幅图像超分辨方法,稀疏表达和字典学习是其中的研究热点。针对比较耗时的字典训练与恢复精度不高图像重建,从减小低分辨率(LR)和高分辨率(HR)特征空间之间差异性的角度提出了一种使用迭代最小二乘字典学习算法(ILS-DLA),并使用锚定邻域回归(ANR)进行图像重建的单幅图像超分辨算法。迭代最小二乘法的整体优化过程极大地缩短了低分辨字典/高分辨字典的训练时间,它采用了与锚定邻域回归相同的优化规则,有效地保证了字典学习和图像重建在理论上的一致性。实验结果表明,所提算法的字典学习效果比K-均值奇异值分解(K-SVD)和Beta过程联合字典学习(BPJDL)等算法更高效,图像重建的效果也优于许多优秀的超分辨算法。

原文链接:http://www.cqvip.com//QK/94832X/201603/668074264.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群