摘要:针对传统静态前馈神经网络动态性能较差的缺点,提出一种基于遗传算法(GA)优化Elman神经网络连接权值的GA-Elman多元变量年径流预测模型.以新疆伊犁河雅马渡站径流预测为例进行实例分析,并构建传统Elman,传统BP和GA-BP多元变量年径流预测模型作为对比模型,预测结果与文献IEA-BP网络模型预测结果进行对比.结果表明:①GA-Elman模型的拟合及预测效果略优于文献IEA-BP模型,该模型用于多元变量年径流预测是合理可行的,具有较好的预测精度和泛化能力.②在相同网络结构及传递函数等条件下,GA-Elman模型的预测精度和泛化能力优于GA-BP模型,传统Elman模型优于传统BP模型,表明具有适应时变特性的Elman反馈动态递归网络预测性能优于BP网络;GA能有效优化Elman
神经网络连接权值,使网络的预测精度和泛化能力有了较大提高.
原文链接:http://www.cqvip.com//QK/93946A/201302/45555124.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)