摘要:支持向量机是一种新的机器学习算法 ,它的基础是 Vapnik创建的统计学习理论。与传统学习方法相比 ,该理论采用了结构风险最小化准则 ,在最小化样本点误差的同时缩小模型泛化误差的上界 ,提高了模型的泛化能力。同时该理论把
机器学习问题转化为一个二次规划问题 ,可以得到唯一的全局最优解。本文应用支持向量机技术进行数据建模研究 ,并用数据建模技术建立了加氢裂化装置分馏塔的航煤干点的软测量模型。
原文链接:http://www.cqvip.com//QK/87759X/2002S1/1004254857.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)