摘要:针对人工神经网络模型在进行负荷预测时,大多不考虑气象等因素的影响,提出了一种基于数据挖掘预处理的改进短期电力负荷预测的方法,应用数据挖掘的聚类功能,寻找与预测日同等气象类型的多个历史短期负荷数据序列进行预测,从而提高预测的精度。鉴于ANN模型对不确定性和模糊信息学习处理能力较差的缺点,引用模糊系统的理论,构建模糊
神经网络(FNN)模型。通过实例预测和预测结果比较分析表明,提出的方法具有较高的预测精度。http://www.cqvip.com//QK/90494A/200922/32188159.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)