摘要:单一神经网络分类的性能很大程度上取决于网络参数的选择,设计一个性能最优的神经网络分类器是非常困难的。针对这一问题,本文提出了基于多个BP神经网络分类器组合的回转窑火焰图像分割方法。选取多组不同的训练样本对多个具有不同初始条件的BP网络进行训练,网络收敛后,用于火焰图像的分割,会产生多种分割结果,采用平均值法、投票表决法、最大统计概率法和
神经网络4种方法对其进行组合,得到了最科的分割结果。实验结果表明,本文提出的方法具有分割效果好和可靠性高等优点,满了实际使用的要求。http://www.cqvip.com//QK/96163X/200004/4969130.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)