全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
559 0
2018-01-12
摘要:传统的基于边缘、颜色、纹理及机器学习等方法进行的车牌定位,需要对车牌图像进行复杂的特征提取,不但训练过程容易造成过拟合或者维数灾难,而且识别结果也易受光照、道路环境及图像质量等因素的影响,虽然漏识别率低,但误识别率高。针对车牌分类问题,利用深度学习中的卷积神经网络,避免了传统模式分类算法在前期对图像复杂的预处理,降低了设计提取特征算法时对丰富经验的依赖。综合对比了BP神经网络、支持向量机、卷积神经网络三种算法,实验结果表明,卷积神经网络在车牌分类中具有较好的表现,识别率高达98.25%,也证明了深度学习在智能交通领域具有较大的应用前景。

原文链接:http://www.cqvip.com//QK/91690X/201714/7000244822.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群