摘要:分析和监测微博文本中所包含的情感信息,能够挖掘用户行为,为微博舆情监管提供借鉴。但微博文本具有长度较短、不规范、存在大量变形词和新词等特点,仅以情感词为特征对微博进行分类的方法准确率较低,难以满足实际使用。为此,基于微博语料构建二元搭配词库,并根据PMI—IR算法结合语料库统计信息,提出搭配词组情感权值的计算方法PMI—IR—P。结合情感词典,采用统计方法生成微博情感特征向量,利用
机器学习中的C4.5算法构建分类模型,对微博文本进行情感倾向分类。分别使用不同的数据集用于构建搭配词库及分类模型,并与基于情感词典的分类方法以及朴素贝叶斯分类方法进行对比。实验结果表明,提出的情感特征通过运用C4.5算法对微博文本情感分类的准确率达到87%,具有较好的效果。http://www.cqvip.com//QK/95200X/201406/50016404.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)