摘要:针对诊断特征数据中重复或相似事例样本和特征参量之间可能存在的相关性,提出一种有效的特征数据双向压缩预处理方法,该法在不损失数据隐含的特征知识的前提下,能有效降低学习机器的学习负担.在进行样本参量的降维处理时,基于主元分析的思想,采用一种改进的主元分析(MPCA)方法用于横向数据压缩,在压缩样本数量时,综述和比较了现有的各种聚类算法,借鉴生物体自然免疫系统中克隆选择以及免疫网络自稳定等有关机理,提出了基于主元核相似度的免疫聚类算法用于纵向数据压缩.仿真实验验证了所提方法的有效性.
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)