全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
521 0
2018-02-16
摘要:川西须家河组地层岩性复杂,属于超致密低孔渗储层,所以储层识别是该地层天然气勘探中所面临的关键问题和难点之一。针对常规储层识别准确率不高的状况,提出利用BP神经网络进行储层含气含水或干层的识别。利用模糊聚类和产层测试结果标定建模样本,采取随机抽样形成建模集与测试集,建立BP神经网络模型对23口井的储层进行含气含水或干层预测,正确率达77.9%以上,明显地提高了该地区的测井解释精度,是一种准确率较高的储层预测方法。

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群