全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
638 0
2018-02-20
摘要:针对采用神经网络进行电力系统短期负荷预测时其网络输入变量的选择是影响预测效果的关键问题,该文提出使用模糊粗糙集理论解决这一问题:对采集到的信息进行特征提取、形成决策表;利用模糊粗糙集理论进行属性约简、去除冗余信息;用得到的属性作为BP网络的输入进行训练预测.该方法既全面考虑了影响负荷预测的历史时间序列、气象等各种因素,为合理地选择神经网络的输入变量提供了一种新的方法,又避免了由于输入变量过多而导致神经网络拓扑结构复杂、训练时间长等不足.计算实例表明,文中提出的方法是有效且可行的.

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群