全部版块 我的主页
论坛 经济学论坛 三区 微观经济学 经济金融数学专区
1763 4
2009-12-13

1 Preface 7

2 What is a time series? 8

3 ARMAmodels 10

3.1 White noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Basic ARMAmodels . . . . . . . . . . . . . . . . . . . . . . . 11

3.3 Lag operators and polynomials . . . . . . . . . . . . . . . . . 11

3.3.1 Manipulating ARMAs with lag operators. . . . . . . . 12

3.3.2 AR(1) to MA() by recursive substitution . . . . . . . 13

3.3.3 AR(1) to MA() with lag operators. . . . . . . . . . . 13

3.3.4 AR(p) to MA(), MA(q) to AR(), factoring lag

polynomials, and partial fractions . . . . . . . . . . . . 14

3.3.5 Summary of allowed lag polynomial manipulations . . 16

3.4 Multivariate ARMAmodels. . . . . . . . . . . . . . . . . . . . 17

3.5 Problems and Tricks . . . . . . . . . . . . . . . . . . . . . . . 19

4 The autocorrelation and autocovariance functions. 21

4.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Autocovariance and autocorrelation of ARMA processes. . . . 22

4.2.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3 A fundamental representation . . . . . . . . . . . . . . . . . . 26

4.4 Admissible autocorrelation functions . . . . . . . . . . . . . . 27

4.5 Multivariate auto- and cross correlations. . . . . . . . . . . . . 30

5 Prediction and Impulse-Response Functions 31

5.1 Predicting ARMAmodels . . . . . . . . . . . . . . . . . . . . 32

5.2 State space representation . . . . . . . . . . . . . . . . . . . . 34

5.2.1 ARMAs in vector AR(1) representation . . . . . . . . 35

5.2.2 Forecasts fromvector AR(1) representation. . . . . . . 35

5.2.3 VARs in vector AR(1) representation. . . . . . . . . . . 36

5.3 Impulse-response function . . . . . . . . . . . . . . . . . . . . 37

5.3.1 Facts about impulse-responses . . . . . . . . . . . . . . 38

6 Stationarity and Wold representation 40

6.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.2 Conditions for stationary ARMA’s . . . . . . . . . . . . . . . 41

6.3 Wold Decomposition theorem . . . . . . . . . . . . . . . . . . 43

6.3.1 What theWold theoremdoes not say . . . . . . . . . . 45

6.4 The Wold MA() as another fundamental representation . . . 46

7 VARs: orthogonalization, variance decomposition, Granger

causality 48

7.1 Orthogonalizing VARs . . . . . . . . . . . . . . . . . . . . . . 48

7.1.1 Ambiguity of impulse-response functions . . . . . . . . 48

7.1.2 Orthogonal shocks . . . . . . . . . . . . . . . . . . . . 49

7.1.3 Sims orthogonalization–Specifying C(0) . . . . . . . . 50

7.1.4 Blanchard-Quah orthogonalization—restrictions on C(1). 52

7.2 Variance decompositions . . . . . . . . . . . . . . . . . . . . . 53

7.3 VAR’s in state space notation . . . . . . . . . . . . . . . . . . 54

7.4 Tricks and problems: . . . . . . . . . . . . . . . . . . . . . . . 55

7.5 Granger Causality . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.5.1 Basic idea . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.5.2 Definition, autoregressive representation . . . . . . . . 58

7.5.3 Moving average representation . . . . . . . . . . . . . . 59

7.5.4 Univariate representations . . . . . . . . . . . . . . . . 60

7.5.5 Effect on projections . . . . . . . . . . . . . . . . . . . 61

7.5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 62

7.5.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 63

7.5.8 A warning: why “Granger causality” is not “Causality” 64

7.5.9 Contemporaneous correlation . . . . . . . . . . . . . . 65

......

附件列表

time_series_book.pdf

大小:754.37 KB

只需: 10 个论坛币  马上下载

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2009-12-13 17:38:06
8 SpectralRepresentation 67
8.1 Facts about complex numbers and trigonometry . . . . . . . . 67
8.1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . 67
8.1.2 Addition,multiplication, and conjugation . . . . . . . . 68
8.1.3 Trigonometric identities . . . . . . . . . . . . . . . . . 69
8.1.4 Frequency, period and phase . . . . . . . . . . . . . . . 69
8.1.5 Fourier transforms . . . . . . . . . . . . . . . . . . . . 70
8.1.6 Why complex numbers? . . . . . . . . . . . . . . . . . 72
8.2 Spectral density . . . . . . . . . . . . . . . . . . . . . . . . . . 73
8.2.1 Spectral densities of some processes . . . . . . . . . . . 75
8.2.2 Spectral densitymatrix, cross spectral density . . . . . 75
8.2.3 Spectral density of a sum. . . . . . . . . . . . . . . . . 77
8.3 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
8.3.1 Spectrum of filtered series . . . . . . . . . . . . . . . . 78
8.3.2 Multivariate filtering formula . . . . . . . . . . . . . . 79
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2009-12-13 20:20:28
8.3.3 Spectral density of arbitrary MA(∞) . . . . . . . . . . 80
8.3.4 Filtering and OLS . . . . . . . . . . . . . . . . . . . . 80
8.3.5 A cosine example . . . . . . . . . . . . . . . . . . . . . 82
8.3.6 Cross spectral density of two filters, and an interpretation
of spectral density . . . . . . . . . . . . . . . . . 82
8.3.7 Constructing filters . . . . . . . . . . . . . . . . . . . . 84
8.3.8 Sims approximation formula . . . . . . . . . . . . . . . 86
8.4 Relation between Spectral, Wold, and Autocovariance representations
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
9 Spectral analysis infinite samples 89
9.1 Finite Fourier transforms . . . . . . . . . . . . . . . . . . . . . 89
9.1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . 89
9.2 Band spectrumregression . . . . . . . . . . . . . . . . . . . . 90
9.2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 90
9.2.2 Band spectrumprocedure . . . . . . . . . . . . . . . . 93
9.3 Cram´er or Spectral representation . . . . . . . . . . . . . . . . 96
9.4 Estimating spectral densities . . . . . . . . . . . . . . . . . . . 98
9.4.1 Fourier transformsample covariances . . . . . . . . . . 98
9.4.2 Sample spectral density . . . . . . . . . . . . . . . . . 98
9.4.3 Relation between transformed autocovariances and sample
density . . . . . . . . . . . . . . . . . . . . . . . . . 99
9.4.4 Asymptotic distribution of sample spectral density . . 101
9.4.5 Smoothed periodogramestimates . . . . . . . . . . . . 101
9.4.6 Weighted covariance estimates . . . . . . . . . . . . . . 102
9.4.7 Relation between weighted covariance and smoothed
periodogramestimates . . . . . . . . . . . . . . . . . . 103
9.4.8 Variance of filtered data estimates . . . . . . . . . . . . 104
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2009-12-14 01:02:38
真是好书啊 谢谢LZ
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2010-1-20 22:57:08
太贵了吧,能便宜吗
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群