全部版块 我的主页
论坛 数据科学与人工智能 数据分析与数据科学 SPSS论坛
2352 2
2020-09-01
主成分分析法_spss主成分分析法_主成分分析法步骤_主成分分析法原理
主成分分析法(PCA)推导

主成分分析法(principal component analysis, PCA)是最常用的无监督高维数据降维方法之一,它旨在降维的过程中保留原数据中最重要的几个分量,从而达到最大化原数据方差的作用。几乎所有数据降维方面研究都要用来作为比较重要的方法。


原文: Ph0en1x Notebook

主成分分析的基本思想就是在原有样本的n维空间内再建立一个d维线性空间,用n个标准正交基进行重新映射,然后选取其中的d'个正交基进行保留,而在这d'个坐标轴上的坐标值就是映射到低维后的坐标。而推导的目的就是为了确定如何确定这这d个标准正交基以及如何选取它们。就如下图(图片来自于网络)一样,将二维空间内的点映射至一维空间,最终选择较长的那条向量进行投影映射。

PCA主成分分析法简介

主成分分析算法(PCA)是最常用的线性降维方法,它的目标是通过某种线性投影,将高维的数据映射到低维的空间中,并期望在所投影的维度上数据的信息量最大(方差最大),以此使用较少的数据维度,同时保留住较多的原数据点的特性。

PCA降维的目的,就是为了在尽量保证“信息量不丢失”的情况下,对原始特征进行降维,也就是尽可能将原始特征往具有最大投影信息量的维度上进行投影。将原特征投影到这些维度上,使降维后信息量损失最小。

总而言之,PCA的概念很简单:减少数据集的维数,同时保留尽可能多的主要信息。

PCA主要步骤
  • 去除平均值
  • 计算协方差矩阵
  • 计算协方差矩阵的特征值和特征向量
  • 将特征值排序
  • 保留前N个最大的特征值对应的特征向量
  • 将原始特征转换到上面得到的N个特征向量构建的新空间中(最后两步,实现了特征压缩)

标准化

此步骤的目的是标准化输入数据集,使数据成比例缩小。

更确切地说,在使用PCA之前必须标准化数据的原因是PCA方法对初始变量的方差非常敏感。也就是说,如果初始变量的范围之间存在较大差异,那么范围较大的变量占的比重较大,和较小的变量相比(例如,范围介于0和100之间的变量较0到1之间的变量会占较大比重),这将导致主成分的偏差。通过将数据转换为同样的比例可以防止这个问题。

求每一个特征的平均值,然后对于所有的样本,每一个特征都减去自身的均值。

经过去均值处理之后,原始特征的值就变成了新的值,在这个新的norm_data的基础上,进行下面的操作。

计算协方差矩阵

此步骤的目的是了解输入数据集的变量相对于彼此平均值变化,换句话说,查看它们是否存在关系。因为有时候,变量由于高度相关,这样就会包含冗余信息。因此,为了识别变量的相关性,我们计算协方差矩阵。

下面以二维矩阵为例:

上述矩阵中,对角线上分别是特征x1和x2的方差,非对角线上是协方差。协方差大于0表示x1和x2。若有一个增,另一个也增;小于0表示一个增,一个减;协方差为0时,两者独立。协方差绝对值越大,两者对彼此的影响越大,反之越小。

计算协方差矩阵的特征值和特征向量

对应的k个特征向量拿出来,我们会得到一组{(λ1,u1),(λ2,u2),...,(λk,uk)}。

将原始特征投影到选取的特征向量上,得到降维后的新K维特征

这个选取最大的前k个特征值和相对应的特征向量,并进行投影的过程,就是降维的过程。对于每一个样本

PCA算法的主要优点
  • 仅仅需要以方差衡量信息量,不受数据集以外的因素影响。
  • 各主成分之间正交,可消除原始数据成分间的相互影响的因素。
  • 计算方法简单,主要运算是特征值分解,易于实现。
PCA算法的主要缺点
  • 主成分各个特征维度的含义具有一定的模糊性,不如原始样本特征的解释性强。
  • 方差小的非主成分也可能含有对样本差异的重要信息,因降维丢弃可能对后续数据处理有影响。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2020-9-2 07:37:07
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2020-9-2 11:47:04
标准化输入数据集,使数据成比例缩小
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群