[backcolor=rgb(250, 250, 250) !important][size=1em]1
[size=1em]2
[backcolor=rgb(250, 250, 250) !important][size=1em]3
[size=1em]4
[backcolor=rgb(250, 250, 250) !important][size=1em]5
[size=1em]6
[backcolor=rgb(250, 250, 250) !important][size=1em]7
[size=1em]8
[backcolor=rgb(250, 250, 250) !important][size=1em]9
[size=1em]10
[backcolor=rgb(250, 250, 250) !important][size=1em]11
[size=1em]12
[backcolor=rgb(250, 250, 250) !important][size=1em]13
[size=1em]14
[backcolor=rgb(250, 250, 250) !important][size=1em]15
[size=1em]16
[backcolor=rgb(250, 250, 250) !important][size=1em]17
[size=1em]18
[backcolor=rgb(250, 250, 250) !important][size=1em]19
[size=1em]20
[backcolor=rgb(250, 250, 250) !important][size=1em]21
[size=1em]22
[backcolor=rgb(250, 250, 250) !important][size=1em]23
[size=1em]24
[backcolor=rgb(250, 250, 250) !important][size=1em]25
[size=1em]26
[backcolor=rgb(250, 250, 250) !important][size=1em]27
| [backcolor=initial !important][size=1em][backcolor=rgb(250, 250, 250) !important][size=1em]library(psych)
[size=1em]pc<-principal(df[,-1], nfactors = 2, score = T, rotate = "varimax")
[size=1em]> pc ### 运行结果 ####
[backcolor=rgb(250, 250, 250) !important][size=1em]Principal Components Analysis
[size=1em]Call: principal(r = df[, -1], nfactors = 2, rotate = "varimax", scores = T)
[backcolor=rgb(250, 250, 250) !important][size=1em]Standardized loadings (pattern matrix) based upon correlation matrix
[size=1em] RC1 RC2 h2 u2
[backcolor=rgb(250, 250, 250) !important][size=1em]x1 -0.07 1.00 1.00 0.0031
[size=1em]x2 0.94 -0.28 0.97 0.0297
[backcolor=rgb(250, 250, 250) !important][size=1em]x3 0.99 0.09 0.98 0.0175
[size=1em]x4 0.99 -0.10 0.99 0.0060
[size=1em] RC1 RC2
[backcolor=rgb(250, 250, 250) !important][size=1em]SS loadings 2.86 1.09
[size=1em]Proportion Var 0.71 0.27
[backcolor=rgb(250, 250, 250) !important][size=1em]Cumulative Var 0.71 0.99
[size=1em]Proportion Explained 0.72 0.28
[backcolor=rgb(250, 250, 250) !important][size=1em]Cumulative Proportion 0.72 1.00
[backcolor=rgb(250, 250, 250) !important][size=1em]Test of the hypothesis that 2 components are sufficient.
[backcolor=rgb(250, 250, 250) !important][size=1em]The degrees of freedom for the null model are 6 and the objective function was 6.8
[size=1em]The degrees of freedom for the model are -1 and the objective function was 0.42
[backcolor=rgb(250, 250, 250) !important][size=1em]The total number of observations was 20 with MLE Chi Square = 6.6 with prob < NA
[backcolor=rgb(250, 250, 250) !important][size=1em]Fit based upon off diagonal values = 1
|