【求助】做DCC检验的部分时发现了一个问题、为什么同一个garch模型(用的同一个spec)ddcfit出来和ugarcgfit的garch部分参数差异会那么大?
我的代码如下【看china1的数据估计结果偏差】:
>garch11.spec = ugarchspec(mean.model = list(armaOrder = c(0,0)),variance.model = list(garchOrder = c(1,1),model = "sGARCH"),distribution.model = "sstd" )
> dcc.garch00.spec = dccspec(uspec = multispec(c(garch11.spec,garch11.spec)),dccOrder = c(1,1),distribution = "mvt")
> ugarchfit(garch11.spec,china1)#单独garch部分
> dccfit(dcc.garch00.spec,data.frame(china1,russia1))
#连带dcc部分 【china1数据ugarchfit的结果】
*---------------------------------*
* GARCH Model Fit *
*---------------------------------*
Conditional Variance Dynamics
-----------------------------------
GARCH Model : sGARCH(1,1)
Mean Model : ARFIMA(0,0,0)
Distribution : sstd
Optimal Parameters
------------------------------------
Estimate Std. Error t value Pr(>|t|)
mu 0.000357 0.000352 1.0152 0.310010
omega 0.000002 0.000003 0.7705 0.441001
alpha1 0.055548 0.020236 2.7450 0.006052
beta1 0.933750 0.023653 39.4765 0.000000
skew 0.975866 0.033862 28.8187 0.000000
shape 10.522990 2.541200 4.1410 0.000035
【china1数据dccfit的结果】
---------------------------------*
* DCC GARCH Fit *
*---------------------------------*
Distribution : mvt
Model : aDCC(0,0)
No. Parameters : 14
[VAR GARCH DCC UncQ] : [0+12+1+1]
No. Series : 2
No. Obs. : 1303
Log-Likelihood : 7471.664
Av.Log-Likelihood : 5.73
Optimal Parameters
-----------------------------------
Estimate Std. Error t value Pr(>|t|)
[china1].mu 0.000357 0.000361 0.98949 0.322422
[china1].omega 0.000002 0.000006 0.38182 0.702598
[china1].alpha1 0.055548 0.037055 1.49905 0.133860
[china1].beta1 0.933750 0.043975 21.23383 0.000000
[china1].skew 0.975866 0.034167 28.56168 0.000000
[china1].shape 10.522990 4.346661 2.42094 0.015481
[russia1].mu 0.000445 0.000369 1.20511 0.228159
[russia1].omega 0.000002 0.000005 0.32898 0.742171
[russia1].alpha1 0.069587 0.037944 1.83393 0.066665
[russia1].beta1 0.926947 0.037103 24.98340 0.000000
[russia1].skew 0.986209 0.038487 25.62441 0.000000
[russia1].shape 6.247921 1.783190 3.50379 0.000459
[Joint]mshape 7.983949 0.817489 9.76643 0.000000
Information Criteria
---------------------
Akaike -11.447
Bayes -11.391
Shibata -11.447
Hannan-Quinn -11.426
Elapsed time : 2.589096