摘要翻译:
本文将分析一个多项式哈密顿方程组的可达奇点,该方程组是由Painlev方程的双重覆盖得到的。我们将说明这个系统通过了所有可访问奇点$P_I\(i=1,2,3)$的painlev\'e$\alpha$-test。我们注意到它的第一个Painlev\'e系统的全纯条件。
---
英文标题:
《Double covering of the Painlev\'e I equation and its singular analysis》
---
作者:
Yusuke Sasano
---
最新提交年份:
2016
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
In this note, we will do analysis of accessible singular points for a polynomial Hamiltonian system obtained by taking a double covering of the Painlev\'e I equation. We will show that this system passes the Painlev\'e $\alpha$-test for all accessible singular points $P_i \ (i=1,2,3)$. We note its holomorphy condition of the first Painlev\'e system.
---
PDF链接:
https://arxiv.org/pdf/0704.2858