摘要翻译:
生物进化是不断变化的结构稳定性、变异性和新的表型、生态位和生态系统的出现的复杂混合体。我们想争辩说,生命的进化标志着由动力学引起的物理学世界观的终结。我们的考虑依赖于讨论“生命环境”的可变性:生物体、生物生态位和生态系统之间的相互作用。这些是不断变化的,本质上是不确定的,甚至是不可预先确定的:我们事先不知道构成选择边界条件的“生态位”。更一般地说,由于“相空间”(可能性空间)在数学上的不可预知性,任何运动定律都不能为进化而制定。我们称这种激进的涌现,从生命到生命。本文的目的是在一个合理的概念框架中整合变异和多样性,并将不可预测性置于一个新的理论层面,即相空间层面。我们的论证将与物理学和该学科中相空间的数学构造进行密切比较。(理论上的)对称作为保持不变的变换的作用将允许我们理解物理相空间的性质,并强调健全的生物学理论所需的差异。在这个框架中,我们讨论了“使能”这一新颖的概念。这将把因果分析限制在不同的情况下(导致差异的差异)。突变或其他因果差异将使我们能够强调“非守恒原理”是进化的核心,与物理动力学相反,物理动力学在很大程度上基于作为对称的守恒原理。临界跃迁,物理学中对称性变化的主要轨迹,将被讨论,并导致“扩展临界”作为更好地理解物质生存状态的概念框架。
---
英文标题:
《No entailing laws, but enablement in the evolution of the biosphere》
---
作者:
Giuseppe Longo and Ma\"el Mont\'evil and Stuart Kauffman
---
最新提交年份:
2012
---
分类信息:
一级分类:Quantitative Biology        数量生物学
二级分类:Other Quantitative Biology        其他定量生物学
分类描述:Work in quantitative biology that does not fit into the other q-bio classifications
不适合其他q-bio分类的定量生物学工作
--
一级分类:Physics        物理学
二级分类:Biological Physics        生物物理学
分类描述:Molecular biophysics, cellular biophysics, neurological biophysics, membrane biophysics, single-molecule biophysics, ecological biophysics, quantum phenomena in biological systems (quantum biophysics), theoretical biophysics, molecular dynamics/modeling and simulation, game theory, biomechanics, bioinformatics, microorganisms, virology, evolution, biophysical methods.
分子生物物理、细胞生物物理、神经生物物理、膜生物物理、单分子生物物理、生态生物物理、生物系统中的量子现象(量子生物物理)、理论生物物理、分子动力学/建模与模拟、博弈论、生物力学、生物信息学、微生物、病毒学、进化论、生物物理方法。
--
一级分类:Quantitative Biology        数量生物学
二级分类:Populations and Evolution        种群与进化
分类描述:Population dynamics, spatio-temporal and epidemiological models, dynamic speciation, co-evolution, biodiversity, foodwebs, aging; molecular evolution and phylogeny; directed evolution; origin of life
种群动力学;时空和流行病学模型;动态物种形成;协同进化;生物多样性;食物网;老龄化;分子进化和系统发育;定向进化;生命起源
--
---
英文摘要:
  Biological evolution is a complex blend of ever changing structural stability, variability and emergence of new phenotypes, niches, ecosystems. We wish to argue that the evolution of life marks the end of a physics world view of law entailed dynamics. Our considerations depend upon discussing the variability of the very "contexts of life": the interactions between organisms, biological niches and ecosystems. These are ever changing, intrinsically indeterminate and even unprestatable: we do not know ahead of time the "niches" which constitute the boundary conditions on selection. More generally, by the mathematical unprestatability of the "phase space" (space of possibilities), no laws of motion can be formulated for evolution. We call this radical emergence, from life to life. The purpose of this paper is the integration of variation and diversity in a sound conceptual frame and situate unpredictability at a novel theoretical level, that of the very phase space. Our argument will be carried on in close comparisons with physics and the mathematical constructions of phase spaces in that discipline. The role of (theoretical) symmetries as invariant preserving transformations will allow us to understand the nature of physical phase spaces and to stress the differences required for a sound biological theoretizing. In this frame, we discuss the novel notion of "enablement". This will restrict causal analyses to differential cases (a difference that causes a difference). Mutations or other causal differences will allow us to stress that "non conservation principles" are at the core of evolution, in contrast to physical dynamics, largely based on conservation principles as symmetries. Critical transitions, the main locus of symmetry changes in physics, will be discussed, and lead to "extended criticality" as a conceptual frame for a better understanding of the living state of matter. 
---
PDF链接:
https://arxiv.org/pdf/1201.2069