摘要翻译:
本文继续研究射影线上的$(n,d,k)$型相干系统,这些相干系统相对于参数$\alpha$的某个值是稳定的。我们考虑了$k=1$的情形,研究了模空间随$\alpha$的变化。我们归纳地确定了第一个模空间和最后一个模空间以及翻转轨迹,并给出了秩2和3的显式描述。我们还明确地确定了秩为2和3的Hodge多项式,并在某些情况下确定了任意秩的Hodge多项式。
---
英文标题:
《Coherent systems of genus 0, III: Computation of flips for k=1》
---
作者:
H. Lange and P. E. Newstead
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
In this paper we continue the investigation of coherent systems of type $(n,d,k)$ on the projective line which are stable with respect to some value of a parameter $\alpha$. We consider the case $k=1$ and study the variation of the moduli spaces with $\alpha$. We determine inductively the first and last moduli spaces and the flip loci, and give an explicit description for ranks 2 and 3. We also determine the Hodge polynomials explicitly for ranks 2 and 3 and in certain cases for arbitrary rank.
---
PDF链接:
https://arxiv.org/pdf/0707.1466