全部版块 我的主页
论坛 经济学人 二区 外文文献专区
371 0
2022-03-04
摘要翻译:
类似于Hard Lefschetz定理(HLT)和Hodge-Riemann双线性关系(HRR)的陈述在各种上下文中成立:它们对光滑紧K\\Ahler流形的上同调代数或射影toric簇的交上同调施加限制;它们限制了Hodge结构极化变化的局部单极性;它们对凸多边形的可能的$F$-向量施加条件。虽然这些定理的陈述依赖于k“Ahler类或其类似类的选择,但通常存在一个可能的k”Ahler类的锥。因此,很自然地要问HLT和HRR在混合环境中是否仍然是真的。本文给出了一种证明混合HLT和HRR的统一方法,推广了已有的结果,并在新的情况下证明了它,如非有理多边形的交上同调。
---
英文标题:
《Mixed Lefschetz Theorems and Hodge-Riemann Bilinear Relations》
---
作者:
Eduardo Cattani
---
最新提交年份:
2008
---
分类信息:

一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--

---
英文摘要:
  Statements analogous to the Hard Lefschetz Theorem (HLT) and the Hodge-Riemann bilinear relations (HRR) hold in a variety of contexts: they impose restrictions on the cohomology algebra of a smooth compact K\"ahler manifold or on the intersection cohomology of a projective toric variety; they restrict the local monodromy of a polarized variation of Hodge structure; they impose conditions on the possible $f$-vectors of convex polytopes. While the statements of these theorems depend on the choice of a K\"ahler class, or its analog, there is usually a cone of possible K\"ahler classes. It is then natural to ask whether the HLT and HRR remain true in a mixed context. In this note we present a unified approach to proving the mixed HLT and HRR, generalizing the previously known results, and proving it in new cases such as the intersection cohomology of non-rational polytopes.
---
PDF链接:
https://arxiv.org/pdf/0707.1352
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群