摘要翻译:
对于具有固定1-完全阻塞理论的真格式X,我们定义了全纯Euler特征的虚形式Chi-Y-亏格和椭圆亏格;它们是变形不变的,并在光滑情况下推广了通常的定义。我们证明了Grothendieck-Riemann-Roch和Hirzebruch-Riemann-Roch定理的虚拟版本。我们证明了虚chi-y-亏格是一个多项式,并利用它定义了一个虚拓扑Euler特征。我们证明了虚椭圆亏格满足一个Jacobi模性质;本文给出并证明了一个在复环等变情况下的局部化定理。我们展示了我们的一些结果如何应用于稳定滑轮的模空间。
---
英文标题:
《Riemann-Roch theorems and elliptic genus for virtually smooth Schemes》
---
作者:
Barbara Fantechi and Lothar G\"ottsche
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
For a proper scheme X with a fixed 1-perfect obstruction theory, we define virtual versions of holomorphic Euler characteristic, chi y-genus, and elliptic genus; they are deformation invariant, and extend the usual definition in the smooth case. We prove virtual versions of the Grothendieck-Riemann-Roch and Hirzebruch-Riemann-Roch theorems. We show that the virtual chi y-genus is a polynomial, and use this to define a virtual topological Euler characteristic. We prove that the virtual elliptic genus satisfies a Jacobi modularity property; we state and prove a localization theorem in the toric equivariant case. We show how some of our results apply to moduli spaces of stable sheaves.
---
PDF链接:
https://arxiv.org/pdf/0706.0988