摘要翻译:
研究了定义在正特征代数闭域上的非sigular射影曲线的变形理论。证明了在一定的假设下,幂级数自同构的局部变形问题可以化为矩阵表示的变形问题。在二维表示的情况下,我们研究了等分变形和混合变形。
---
英文标题:
《Deformation of Curves with Automorphisms and representations on
Riemann-Roch spaces》
---
作者:
Aristides Kontogeorgis
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Number Theory 数论
分类描述:Prime numbers, diophantine equations, analytic number theory, algebraic number theory, arithmetic geometry, Galois theory
素数,丢番图方程,解析数论,代数数论,算术几何,伽罗瓦理论
--
---
英文摘要:
We study the deformation theory of nonsigular projective curves defined over algebraic closed fields of positive characteristic. We show that under some assumptions the local deformation problem for automorphisms of powerseries can be reduced to a deformation problem for matrix representations. We study both equicharacteristic and mixed deformations in the case of two dimensional representations.
---
PDF链接:
https://arxiv.org/pdf/0804.1647