摘要翻译:
在前文中,我们证明了实亏格零代数曲线的模空间的可定向覆盖是一个由结合面体平铺的紧非球面流形,从而解决了系统树空间的奇异性。在这一续集的草稿中,我们构造了实二次型空间的相关(叠层)分辨率,并建议,也许没有太多的理由,由这些对象参数化的振子系统可以在基因组学中提供有用的模型。
---
英文标题:
《Diagonalizing the genome II: toward possible applications》
---
作者:
Satyan L. Devadoss, Jack Morava
---
最新提交年份:
2012
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Topology 代数拓扑
分类描述:Homotopy theory, homological algebra, algebraic treatments of manifolds
同伦理论,同调代数,流形的代数处理
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Quantitative Biology 数量生物学
二级分类:Other Quantitative Biology 其他定量生物学
分类描述:Work in quantitative biology that does not fit into the other q-bio classifications
不适合其他q-bio分类的定量生物学工作
--
---
英文摘要:
In a previous paper, we showed that the orientable cover of the moduli space of real genus zero algebraic curves with marked points is a compact aspherical manifold tiled by associahedra, which resolves the singularities of the space of phylogenetic trees. In this draft of a sequel, we construct a related (stacky) resolution of a space of real quadratic forms, and suggest, perhaps without much justification, that systems of oscillators parametrized by such objects may may provide useful models in genomics.
---
PDF链接:
https://arxiv.org/pdf/1209.5465