全部版块 我的主页
论坛 经济学人 二区 外文文献专区
256 0
2022-03-04
摘要翻译:
证明了一个表示非紧简连通曲面上点的Hilbert格式的切丛上的任意乘性特征类的闭式。作为推论,我们导出了这些Hilbert格式切丛Chern特征的一个封闭公式。我们还给出了曲面上线丛所对应的重言丛的乘法特征类的一个闭式。最后,我们讨论了本文结果对任意曲面点的Hilbert格式的含义。
---
英文标题:
《Characteristic classes of the Hilbert schemes of points on non-compact
  simply-connected surfaces》
---
作者:
Marc Nieper-Wisskirchen
---
最新提交年份:
2007
---
分类信息:

一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics        数学
二级分类:Algebraic Topology        代数拓扑
分类描述:Homotopy theory, homological algebra, algebraic treatments of manifolds
同伦理论,同调代数,流形的代数处理
--

---
英文摘要:
  We prove a closed formula expressing any multiplicative characteristic class evaluated on the tangent bundle of the Hilbert schemes of points on a non-compact simply-connected surface.   As a corollary, we deduce a closed formula for the Chern character of the tangent bundles of these Hilbert schemes.   We also give a closed formula for the multiplicative characteristic classes of the tautological bundles associated to a line bundle on the surface.   We finally remark which implications the results here have for the Hilbert schemes of points of an arbitrary surface.
---
PDF链接:
https://arxiv.org/pdf/0707.3268
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群