摘要翻译:
我们确定了与A_n型奇点有关的表面分辨率点的Hilbert格式的等变量子上同调的两点不变量。编码这些不变量的算子用仿射李代数\HAT{gl}(n+1)对其基本表示的作用来表示。假设一定的非简并猜想,这些算子决定了量子上同调环的全结构。证明了A_n×P^1的量子上同调与Gromov-Witten/Donaldson-Thomas理论之间的关系。最后,我们讨论了相关的量子微分方程的单群性质,并对D型和E型奇点进行了推广。
---
英文标题:
《Quantum cohomology of the Hilbert scheme of points on A_n-resolutions》
---
作者:
D. Maulik, A. Oblomkov
---
最新提交年份:
2009
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Representation Theory 表象理论
分类描述:Linear representations of algebras and groups, Lie theory, associative algebras, multilinear algebra
代数和群的线性表示,李理论,结合代数,多重线性代数
--
---
英文摘要:
We determine the two-point invariants of the equivariant quantum cohomology of the Hilbert scheme of points of surface resolutions associated to type A_n singularities. The operators encoding these invariants are expressed in terms of the action of the affine Lie algebra \hat{gl}(n+1) on its basic representation. Assuming a certain nondegeneracy conjecture, these operators determine the full structure of the quantum cohomology ring. A relationship is proven between the quantum cohomology and Gromov-Witten/Donaldson-Thomas theories of A_n x P^1. We close with a discussion of the monodromy properties of the associated quantum differential equation and a generalization to singularities of type D and E.
---
PDF链接:
https://arxiv.org/pdf/0802.2737