摘要翻译:
矛盾常常被看作是智能系统的缺陷和对效率的危险限制。在本文中,我们提出了一个问题,是否相反,它可以被认为是一个关键的工具,在生物结构中增加智能。在数学背景下回答这个问题的一种可能的方法被展示出来,提出了一个暗示智力和矛盾之间联系的命题。给出了一种在元胞自动机定义良好的环境下的具体方法。这里我们定义了“观察者”、“实体”、“环境”、“智力”和“矛盾”等模型。这些定义大致符合这些词的共同含义,使我们能够以无偏见的数学方式推导出关于这些概念的简单而有力的结果。三个计算实验为现实世界中智力和矛盾之间的形式联系提供了证据。
---
英文标题:
《Does intelligence imply contradiction?》
---
作者:
Patrizio Frosini
---
最新提交年份:
2008
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence
人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science 计算机科学
二级分类:Logic in Computer Science 计算机科学中的逻辑
分类描述:Covers all aspects of logic in computer science, including finite model theory, logics of programs, modal logic, and program verification. Programming language semantics should have Programming Languages as the primary subject area. Roughly includes material in ACM Subject Classes D.2.4, F.3.1, F.4.0, F.4.1, and F.4.2; some material in F.4.3 (formal languages) may also be appropriate here, although Computational Complexity is typically the more appropriate subject area.
涵盖计算机科学中逻辑的所有方面,包括有限模型理论,程序逻辑,模态逻辑和程序验证。程序设计语言语义学应该把程序设计语言作为主要的学科领域。大致包括ACM学科类D.2.4、F.3.1、F.4.0、F.4.1和F.4.2中的材料;F.4.3(形式语言)中的一些材料在这里也可能是合适的,尽管计算复杂性通常是更合适的主题领域。
--
---
英文摘要:
Contradiction is often seen as a defect of intelligent systems and a dangerous limitation on efficiency. In this paper we raise the question of whether, on the contrary, it could be considered a key tool in increasing intelligence in biological structures. A possible way of answering this question in a mathematical context is shown, formulating a proposition that suggests a link between intelligence and contradiction. A concrete approach is presented in the well-defined setting of cellular automata. Here we define the models of ``observer'', ``entity'', ``environment'', ``intelligence'' and ``contradiction''. These definitions, which roughly correspond to the common meaning of these words, allow us to deduce a simple but strong result about these concepts in an unbiased, mathematical manner. Evidence for a real-world counterpart to the demonstrated formal link between intelligence and contradiction is provided by three computational experiments.
---
PDF链接:
https://arxiv.org/pdf/0801.0232