摘要翻译:
在这篇论文中,我们提出了几个对研究的原创性贡献:-DG范畴及其不变量;-Neeman的良好生成(代数)三角化范畴;-Fomin-Zelevinsky通过表示论的簇代数方法。
---
英文标题:
《Theorie homotopique des DG-categories》
---
作者:
Goncalo Tabuada
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:K-Theory and Homology K-理论与同调
分类描述:Algebraic and topological K-theory, relations with topology, commutative algebra, and operator algebras
代数和拓扑K-理论,与拓扑的关系,交换代数和算子代数
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
In this thesis we present several original contributions to the study of: - DG categories and their invariants; - Neeman's well-generated (algebraic) triangulated categories; - Fomin-Zelevinsky's cluster algebras approach via representation theory.
---
PDF链接:
https://arxiv.org/pdf/0710.4303