摘要翻译:
我们证明了在G维阿贝尔变体模空间中具有严格极大Higgs场的有理Shimura曲线Y不与大G的Schottky轨迹通有相交。我们通过使用Viehweg和Zuo的一个结果来实现这一点,该结果说,如果Y使g属的一族曲线参数化,则相应的Jacobians族在Y上与模椭圆曲线族的g-折积是等价的。在把情况从复数域减少到有限域之后,结合Weil和Sato-Tate的猜想,我们将看到这对于大亏格G是不可能的。
---
英文标题:
《On Shimura curves in the Schottky locus》
---
作者:
Stefan Kukulies
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Number Theory 数论
分类描述:Prime numbers, diophantine equations, analytic number theory, algebraic number theory, arithmetic geometry, Galois theory
素数,丢番图方程,解析数论,代数数论,算术几何,伽罗瓦理论
--
---
英文摘要:
We show that a given rational Shimura curve Y with strictly maximal Higgs field in the moduli space of g-dimensional abelian varieties does not generically intersect the Schottky locus for large g. We achieve this by using a result of Viehweg and Zuo which says that if Y parameterizes a family of curves of genus g, then the corresponding family of Jacobians is isogenous over Y to the g-fold product of a modular family of elliptic curves. After reducing the situation from the field of complex numbers to a finite field, we will see, combining the Weil and Sato-Tate conjectures, that this is impossible for large genus g.
---
PDF链接:
https://arxiv.org/pdf/0705.4432