摘要翻译:
证明了Milne关于Abel型Shimura变体在任意未分支混合特征$(0,p)$中的积分正则模型存在性的一个猜想。作为应用,我们证明了Milne关于Hodge型Shimura变种的积分正则模型的$p=2$a motivic猜想。
---
英文标题:
《Good Reductions of Shimura Varieties of Hodge Type in Arbitrary
  Unramified Mixed Characteristic, Part II》
---
作者:
Adrian Vasiu
---
最新提交年份:
2012
---
分类信息:
一级分类:Mathematics        数学
二级分类:Number Theory        数论
分类描述:Prime numbers, diophantine equations, analytic number theory, algebraic number theory, arithmetic geometry, Galois theory
素数,丢番图方程,解析数论,代数数论,算术几何,伽罗瓦理论
--
一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
  We prove a conjecture of Milne pertaining to the existence of integral canonical models of Shimura varieties of abelian type in arbitrary unramified mixed characteristic $(0,p)$. As an application we prove for $p=2$ a motivic conjecture of Milne pertaining to integral canonical models of Shimura varieties of Hodge type. 
---
PDF链接:
https://arxiv.org/pdf/0712.1572