摘要翻译:
研究了一类多值齐次函数的极性变换的程度。特别地,我们证明了与齐次多项式$F$相关的极变换的泛型线性空间的前像的阶是由$F$的零轨迹决定的。对于零维-维线性空间,这是Dolgachev的猜想,并由Dimca-Papadima利用拓扑变元证明。我们的方法是代数几何的,依赖于对自然关联的对数叶的高斯映射的研究。
---
英文标题:
《On the degree of Polar Transformations -- An approach through
Logarithmic Foliations》
---
作者:
Thiago Fassarella, Jorge Vit\'orio Pereira
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We investigate the degree of the polar transformations associated to a certain class of multi-valued homogeneous functions. In particular we prove that the degree of the pre-image of generic linear spaces by a polar transformation associated to a homogeneous polynomial $F$ is determined by the zero locus of $F$. For zero dimensional-dimensional linear spaces this was conjecture by Dolgachev and proved by Dimca-Papadima using topological arguments. Our methods are algebro-geometric and rely on the study of the Gauss map of naturally associated logarithmic foliations.
---
PDF链接:
https://arxiv.org/pdf/0705.1867