全部版块 我的主页
论坛 经济学人 二区 外文文献专区
198 0
2022-03-06
摘要翻译:
用Schubert类描述了B_n、D_n、G_2和F_4型标志流形的积分上同调环。主要工具是Bernstein-Gelfand-Gelfand和Demazure的分差算子。作为应用,我们计算了相应复代数群的周环,从而恢复了R.Marlin的结果。
---
英文标题:
《A description based on Schubert classes of cohomology of flag manifolds》
---
作者:
Masaki Nakagawa
---
最新提交年份:
2008
---
分类信息:

一级分类:Mathematics        数学
二级分类:Algebraic Topology        代数拓扑
分类描述:Homotopy theory, homological algebra, algebraic treatments of manifolds
同伦理论,同调代数,流形的代数处理
--
一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--

---
英文摘要:
  We describe the integral cohomology rings of the flag manifolds of types B_n, D_n, G_2 and F_4 in terms of their Schubert classes. The main tool is the divided difference operators of Bernstein-Gelfand-Gelfand and Demazure. As an application, we compute the Chow rings of the corresponding complex algebraic groups, recovering thereby the results of R. Marlin.
---
PDF链接:
https://arxiv.org/pdf/0709.0785
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群