摘要翻译:
在正交Grassmannian中,我们计算了环面不动点切锥对Schubert簇的理想的初始理想。初始理想是无平方的单项式理想,因而是单纯复形的Stanley-Reisner面环。我们描述了这些配合物。这些复形的极大面编码某些不相交的格路径集。
---
英文标题:
《Initial ideals of tangent cones to Schubert varieties in orthogonal
Grassmannians》
---
作者:
K. N. Raghavan and Shyamashree Upadhyay
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Combinatorics 组合学
分类描述:Discrete mathematics, graph theory, enumeration, combinatorial optimization, Ramsey theory, combinatorial game theory
离散数学,图论,计数,组合优化,拉姆齐理论,组合对策论
--
一级分类:Mathematics 数学
二级分类:Commutative Algebra 交换代数
分类描述:Commutative rings, modules, ideals, homological algebra, computational aspects, invariant theory, connections to algebraic geometry and combinatorics
交换环,模,理想,同调代数,计算方面,不变理论,与代数几何和组合学的联系
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We compute the initial ideals, with respect to certain conveniently chosen term orders, of ideals of tangent cones at torus fixed points to Schubert varieties in orthogonal Grassmannians. The initial ideals turn out to be square-free monomial ideals and therefore Stanley-Reisner face rings of simplicial complexes. We describe these complexes. The maximal faces of these complexes encode certain sets of non-intersecting lattice paths.
---
PDF链接:
https://arxiv.org/pdf/0710.2950