全部版块 我的主页
论坛 经济学人 二区 外文文献专区
172 0
2022-03-06
摘要翻译:
设计用于预测结构化数据的判别学习算法的主要挑战是解决由输出空间的指数大小引起的计算问题。现有的算法通过不同的假设来保证模型参数的有效多项式时间估计。对于几种组合结构,包括圈、偏序集、置换和其他图类,这些假设不成立。在这篇论文中,我们通过引入两个新的假设来解决设计用于预测组合结构的学习算法的问题:(i)第一个假设是一个特定的计数问题可以被有效地解决。其结果是对结构化预测的经典岭回归的推广。(ii)第二个假设是可以有效地解决一个特定的抽样问题。其结果为设计和分析概率结构化预测模型提供了一种新的技术。这些结果可以应用于解决许多复杂的学习问题,包括但不限于多标签分类、多类别层次分类和标签排序。
---
英文标题:
《Learning to Predict Combinatorial Structures》
---
作者:
Shankar Vembu
---
最新提交年份:
2010
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Machine Learning        机器学习
分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods.
关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。
--
一级分类:Computer Science        计算机科学
二级分类:Artificial Intelligence        人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--

---
英文摘要:
  The major challenge in designing a discriminative learning algorithm for predicting structured data is to address the computational issues arising from the exponential size of the output space. Existing algorithms make different assumptions to ensure efficient, polynomial time estimation of model parameters. For several combinatorial structures, including cycles, partially ordered sets, permutations and other graph classes, these assumptions do not hold. In this thesis, we address the problem of designing learning algorithms for predicting combinatorial structures by introducing two new assumptions: (i) The first assumption is that a particular counting problem can be solved efficiently. The consequence is a generalisation of the classical ridge regression for structured prediction. (ii) The second assumption is that a particular sampling problem can be solved efficiently. The consequence is a new technique for designing and analysing probabilistic structured prediction models. These results can be applied to solve several complex learning problems including but not limited to multi-label classification, multi-category hierarchical classification, and label ranking.
---
PDF链接:
https://arxiv.org/pdf/0912.4473
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群