摘要翻译:
在小温度展开下,计算了三角形晶格上具有O(N)不变性的sigma模型在N=-1处的二圈重整化常数和第一非普适项β函数的三圈系数。对于负温度,相应的Grassmann理论的配分函数是这样一个格子上无根森林的母函数,其中温度作为森林中树木数量的化学势。为了计算Feynman图,我们将坐标空间方法推广到三角形格子。
---
英文标题:
《Renormalization flow for unrooted forests on a triangular lattice》
---
作者:
Sergio Caracciolo (Milan U. & INFN, Milan), Claudia De Grandi (Boston
U.), Andrea Sportiello (Milan U. & INFN, Milan)
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
一级分类:Physics 物理学
二级分类:High Energy Physics - Lattice 高能物理-晶格
分类描述:Lattice field theory. Phenomenology from lattice field theory. Algorithms for lattice field theory. Hardware for lattice field theory.
晶格场论。从晶格场论到现象学。格场论的算法。晶格场论硬件。
--
---
英文摘要:
We compute in small temperature expansion the two-loop renormalization constants and the three-loop coefficient of the beta-function, that is the first non-universal term, for the sigma-model with O(N) invariance on the triangular lattice at N=-1. The partition function of the corresponding Grassmann theory is, for negative temperature, the generating function of unrooted forests on such a lattice, where the temperature acts as a chemical potential for the number of trees in the forest. To evaluate Feynman diagrams we extend the coordinate space method to the triangular lattice.
---
PDF链接:
https://arxiv.org/pdf/705.3891