摘要翻译:
本文证明了Fintushel-Stern的Horikawa曲面的构造可以在复范畴中进行。Horikawa曲面是在光滑范畴中由椭圆曲面通过有理blow-down手术得到的。主要涉及的技术是Q-Gorenstein平滑。
---
英文标题:
《A construction of Horikawa surface via Q-Gorenstein smoothings》
---
作者:
Yongnam Lee (Sogang U.) and Jongil Park (Seoul National U.)
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Geometric Topology 几何拓扑
分类描述:Manifolds, orbifolds, polyhedra, cell complexes, foliations, geometric structures
流形,轨道,多面体,细胞复合体,叶状,几何结构
--
---
英文摘要:
In this article we prove that Fintushel-Stern's construction of Horikawa surface, which is obtained from an elliptic surface via a rational blow-down surgery in smooth category, can be performed in complex category. The main technique involved is Q-Gorenstein smoothings.
---
PDF链接:
https://arxiv.org/pdf/0708.3319