摘要翻译:
利用复反射群的组合性质,我们证明了与相应有理Cherednik代数中心相关的推广Calogero-Moser空间对于其变形参数c的所有值是奇异的当且仅当该群不同于花环积$S_n\wr C_m$和二元四面体群。这个结果和Ginzburg和Kaledin的一个定理表明,在这些情形之外,不存在奇异辛簇H+H*/W的辛分解;相反,我们证明了二元四面体群存在辛分解(Hilbert格式提供了花环积情形的分解)。
---
英文标题:
《On singular Calogero-Moser spaces》
---
作者:
Gwyn Bellamy
---
最新提交年份:
2013
---
分类信息:
一级分类:Mathematics 数学
二级分类:Representation Theory 表象理论
分类描述:Linear representations of algebras and groups, Lie theory, associative algebras, multilinear algebra
代数和群的线性表示,李理论,结合代数,多重线性代数
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Rings and Algebras 环与代数
分类描述:Non-commutative rings and algebras, non-associative algebras, universal algebra and lattice theory, linear algebra, semigroups
非交换环与代数,非结合代数,泛代数与格论,线性代数,半群
--
---
英文摘要:
Using combinatorial properties of complex reflection groups, we show that the generalised Calogero-Moser space associated to the centre of the corresponding rational Cherednik algebra is singular for all values of its deformation parameter c if and only if the group is different from the wreath product $S_n\wr C_m$ and the binary tetrahedral group. This result and a theorem of Ginzburg and Kaledin imply that there does not exist a symplectic resolution of the singular symplectic variety h+h*/W outside of these cases; conversely we show that there exists a symplectic resolution for the binary tetrahedral group (Hilbert schemes provide resolutions for the wreath product case).
---
PDF链接:
https://arxiv.org/pdf/0707.3694