摘要翻译:
我们证明了在每个光滑射影有理曲面X上存在一条反复数曲线,它具有无穷多个零熵自同构群G或Z型自同构群G。Z(半直积),前提是对(X,G)是极小的。这是Curtis T.McMullen(2005)推测的,并进一步追溯到Marat Gizatullin和Brian Harbourne(1987)。我们还证明了(也许)著名的Tits择一定理的最强形式。
---
英文标题:
《Automorphism groups and anti-pluricanonical curves》
---
作者:
De-Qi Zhang
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Dynamical Systems 动力系统
分类描述:Dynamics of differential equations and flows, mechanics, classical few-body problems, iterations, complex dynamics, delayed differential equations
微分方程和流动的动力学,力学,经典的少体问题,迭代,复杂动力学,延迟微分方程
--
---
英文摘要:
We show the existence of an anti-pluricanonical curve on every smooth projective rational surface X which has an infinite group G of automorphisms of either null entropy or of type Z . Z (semi-direct product), provided that the pair (X, G) is minimal. This was conjectured by Curtis T. McMullen (2005) and further traced back to Marat Gizatullin and Brian Harbourne (1987). We also prove (perhaps) the strongest form of the famous Tits alternative theorem.
---
PDF链接:
https://arxiv.org/pdf/0705.0476