全部版块 我的主页
论坛 经济学人 二区 外文文献专区
359 0
2022-03-06
摘要翻译:
对于任何负定直射3-流形M,我们从其直射图构造分次Z[U]-模。对于有理同调球域,这在猜想上等于Ozsvath和Szabo的Heegaard-Floer同调,但它有更多的结构。如果M是一个复奇异环节,则归一化欧拉特征可以与解析不变量相比较。根据这一新的对象讨论了Seiberg-Witten不变猜想。
---
英文标题:
《Lattice cohomology of normal surface singularities》
---
作者:
Andras Nemethi
---
最新提交年份:
2007
---
分类信息:

一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics        数学
二级分类:Geometric Topology        几何拓扑
分类描述:Manifolds, orbifolds, polyhedra, cell complexes, foliations, geometric structures
流形,轨道,多面体,细胞复合体,叶状,几何结构
--

---
英文摘要:
  For any negative definite plumbed 3-manifold M we construct from its plumbed graph a graded Z[U]-module. This, for rational homology spheres, conjecturally equals the Heegaard-Floer homology of Ozsvath and Szabo, but it has even more structure. If M is a complex singularity link then the normalized Euler-characteristic can be compared with the analytic invariants. The Seiberg--Witten Invariant Conjecture is discussed in the light of this new object.
---
PDF链接:
https://arxiv.org/pdf/0709.0841
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群