摘要翻译:
Garg和Abadi最近证明了突出的访问控制逻辑可以以一种健全和完整的方式翻译成模态逻辑S4。我们以前已经概述了包括单模逻辑K和S4在内的正规多模逻辑是如何嵌入到简单类型理论(也称为高阶逻辑)中的,并且我们已经证明了高阶定理证明器LEO-II可以自动地对它们进行推理。在本文中,我们将这些结果结合起来,描述了简单类型理论中不同访问控制逻辑的合理和完整的嵌入。利用这个框架,我们证明了离架定理证明器LEO-II可以应用于突出的访问控制逻辑的自动推理。
---
英文标题:
《Automating Access Control Logics in Simple Type Theory with LEO-II》
---
作者:
Christoph Benzmueller
---
最新提交年份:
2009
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Logic in Computer Science 计算机科学中的逻辑
分类描述:Covers all aspects of logic in computer science, including finite model theory, logics of programs, modal logic, and program verification. Programming language semantics should have Programming Languages as the primary subject area. Roughly includes material in ACM Subject Classes D.2.4, F.3.1, F.4.0, F.4.1, and F.4.2; some material in F.4.3 (formal languages) may also be appropriate here, although Computational Complexity is typically the more appropriate subject area.
涵盖计算机科学中逻辑的所有方面,包括有限模型理论,程序逻辑,模态逻辑和程序验证。程序设计语言语义学应该把程序设计语言作为主要的学科领域。大致包括ACM学科类D.2.4、F.3.1、F.4.0、F.4.1和F.4.2中的材料;F.4.3(形式语言)中的一些材料在这里也可能是合适的,尽管计算复杂性通常是更合适的主题领域。
--
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence
人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
---
英文摘要:
Garg and Abadi recently proved that prominent access control logics can be translated in a sound and complete way into modal logic S4. We have previously outlined how normal multimodal logics, including monomodal logics K and S4, can be embedded in simple type theory (which is also known as higher-order logic) and we have demonstrated that the higher-order theorem prover LEO-II can automate reasoning in and about them. In this paper we combine these results and describe a sound and complete embedding of different access control logics in simple type theory. Employing this framework we show that the off the shelf theorem prover LEO-II can be applied to automate reasoning in prominent access control logics.
---
PDF链接:
https://arxiv.org/pdf/0901.3574