摘要翻译:
通过计算金字塔分块的母函数,我们验证了Kenyon/Szendroi的一个新猜想,ARXIV:0705.3419。金字塔分区与阿兹特克钻石关系密切;它们的母函数是针叶树奇点{x1x2-x3x4=0}的非交换分解的Donaldson-Thomas理论的配分函数。证明不需要代数几何;它使用了Elkies、Kuperberg、Larsen和Propp的多米诺洗牌算法的修改版本。
---
英文标题:
《Computing a pyramid partition generating function with dimer shuffling》
---
作者:
Benjamin Young
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Combinatorics 组合学
分类描述:Discrete mathematics, graph theory, enumeration, combinatorial optimization, Ramsey theory, combinatorial game theory
离散数学,图论,计数,组合优化,拉姆齐理论,组合对策论
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We verify a recent conjecture of Kenyon/Szendroi, arXiv:0705.3419, by computing the generating function for pyramid partitions. Pyramid partitions are closely related to Aztec Diamonds; their generating function turns out to be the partition function for the Donaldson--Thomas theory of a non-commutative resolution of the conifold singularity {x1x2 -x3x4 = 0}. The proof does not require algebraic geometry; it uses a modified version of the domino shuffling algorithm of Elkies, Kuperberg, Larsen and Propp.
---
PDF链接:
https://arxiv.org/pdf/0709.3079