全部版块 我的主页
论坛 经济学人 二区 外文文献专区
573 0
2022-03-07
摘要翻译:
在纽科姆悖论中,你选择接收一个特定封闭盒子的内容,或者接收那个封闭盒子和另一个封闭盒子的内容。在您选择之前,预测算法会对您的选择进行推断,并根据该推断填充两个框。纽科姆的悖论是,博弈论似乎为你在这种情况下应该做出什么选择提供了两个相互冲突的建议。我们用博弈论的一个新的扩展来分析Newcomb悖论,其中参与者在一个贝叶斯网中设置条件概率分布。我们表明,在Newcomb的情景中,两个博弈论建议对贝叶斯网与你的选择和算法预测之间的关系有不同的假设。我们通过证明这两个贝叶斯网络是不相容的来解决这个悖论。我们还表明,算法预测的准确性,这是许多以前工作的重点,是不相关的。此外,我们还表明,如果一个人在规定底层贝叶斯网时马虎,纽科姆的情景只提供了博弈论的期望效用和优势原则之间的矛盾。我们还证明了Newcomb佯谬是时间反转不变量;如果算法在你做出选择之后而不是之前做出“预测”,那么悖论和它的解决方案都是不变的。
---
英文标题:
《What does Newcomb's paradox teach us?》
---
作者:
David H. Wolpert and Gregory Benford
---
最新提交年份:
2010
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Computer Science and Game Theory        计算机科学与博弈论
分类描述:Covers all theoretical and applied aspects at the intersection of computer science and game theory, including work in mechanism design, learning in games (which may overlap with Learning), foundations of agent modeling in games (which may overlap with Multiagent systems), coordination, specification and formal methods for non-cooperative computational environments. The area also deals with applications of game theory to areas such as electronic commerce.
涵盖计算机科学和博弈论交叉的所有理论和应用方面,包括机制设计的工作,游戏中的学习(可能与学习重叠),游戏中的agent建模的基础(可能与多agent系统重叠),非合作计算环境的协调、规范和形式化方法。该领域还涉及博弈论在电子商务等领域的应用。
--
一级分类:Computer Science        计算机科学
二级分类:Artificial Intelligence        人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Mathematics        数学
二级分类:Optimization and Control        优化与控制
分类描述:Operations research, linear programming, control theory, systems theory, optimal control, game theory
运筹学,线性规划,控制论,系统论,最优控制,博弈论
--
一级分类:Mathematics        数学
二级分类:Probability        概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--

---
英文摘要:
  In Newcomb's paradox you choose to receive either the contents of a particular closed box, or the contents of both that closed box and another one. Before you choose, a prediction algorithm deduces your choice, and fills the two boxes based on that deduction. Newcomb's paradox is that game theory appears to provide two conflicting recommendations for what choice you should make in this scenario. We analyze Newcomb's paradox using a recent extension of game theory in which the players set conditional probability distributions in a Bayes net. We show that the two game theory recommendations in Newcomb's scenario have different presumptions for what Bayes net relates your choice and the algorithm's prediction. We resolve the paradox by proving that these two Bayes nets are incompatible. We also show that the accuracy of the algorithm's prediction, the focus of much previous work, is irrelevant. In addition we show that Newcomb's scenario only provides a contradiction between game theory's expected utility and dominance principles if one is sloppy in specifying the underlying Bayes net. We also show that Newcomb's paradox is time-reversal invariant; both the paradox and its resolution are unchanged if the algorithm makes its `prediction' after you make your choice rather than before.
---
PDF链接:
https://arxiv.org/pdf/1003.1343
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群