摘要翻译:
我们发现了对数凹密度的非参数极大似然估计(MLE)的极限分布,即形式为$F_0=\exp\varphi_0$的密度,其中$\varphi_0$是$\MathBB{R}$上的凹函数。逐点极限分布依赖于在$H_k$0处的二阶和三阶导数,积分布朗运动过程的“下限”减去一个漂移项,该漂移项依赖于目标点处$\varphi_0=\log f_0$的消失导数的个数。我们还建立了模型$M(f_0)$的估计量的极限分布,并建立了一个新的局部渐近极大极小下界,这表明了我们的模型估计量在收敛速度和常数对总体值的依赖方面的最优性。
---
英文标题:
《Limit distribution theory for maximum likelihood estimation of a
log-concave density》
---
作者:
Fadoua Balabdaoui, Kaspar Rufibach, Jon A. Wellner
---
最新提交年份:
2009
---
分类信息:
一级分类:Mathematics 数学
二级分类:Statistics Theory 统计理论
分类描述:Applied, computational and theoretical statistics: e.g. statistical inference, regression, time series, multivariate analysis, data analysis, Markov chain Monte Carlo, design of experiments, case studies
应用统计、计算统计和理论统计:例如统计推断、回归、时间序列、多元分析、
数据分析、马尔可夫链蒙特卡罗、实验设计、案例研究
--
一级分类:Statistics 统计学
二级分类:Statistics Theory 统计理论
分类描述:stat.TH is an alias for math.ST. Asymptotics, Bayesian Inference, Decision Theory, Estimation, Foundations, Inference, Testing.
Stat.Th是Math.St的别名。渐近,贝叶斯推论,决策理论,估计,基础,推论,检验。
--
---
英文摘要:
We find limiting distributions of the nonparametric maximum likelihood estimator (MLE) of a log-concave density, that is, a density of the form $f_0=\exp\varphi_0$ where $\varphi_0$ is a concave function on $\mathbb{R}$. The pointwise limiting distributions depend on the second and third derivatives at 0 of $H_k$, the "lower invelope" of an integrated Brownian motion process minus a drift term depending on the number of vanishing derivatives of $\varphi_0=\log f_0$ at the point of interest. We also establish the limiting distribution of the resulting estimator of the mode $M(f_0)$ and establish a new local asymptotic minimax lower bound which shows the optimality of our mode estimator in terms of both rate of convergence and dependence of constants on population values.
---
PDF链接:
https://arxiv.org/pdf/708.34