摘要翻译:
本文用自洽随机理论研究了球形细胞表面上可逆配体与受体结合的动力学。配体的结合、解离、扩散和再结合被系统地纳入理论。我们明确地导出了配体结合受体分数p(t)在不同状态下的时间演化。与普遍接受的观点相反,我们发现众所周知的关联率的Berg-Purcell标度被修改为时间的函数。具体地说,有效开机率非单调地随时间变化,在很早和很晚的时间都等于内禀率,而在中间时间近似等于Berg-Purcell值。在结合曲线中或在离解实验中测量的有效离解率,由于重新结合事件而强烈改变,并且除了在很晚的时间外,它呈Berg-Purcell值,在很晚的时间衰减是代数的而不是指数的。在平衡状态下,溶液中各处的配体浓度是相同的,并等于其空间平均值,从而确保细胞附近没有耗尽。我们的结果对结合实验和配体-受体系统的数值模拟也有一定的意义。
---
英文标题:
《Self-consistent theory of reversible ligand binding to a spherical cell》
---
作者:
Shivam Ghosh (St.Stephens College, Delhi), Manoj Gopalakrishnan (HRI,
  Allahabad), Kimberly Forsten-Williams (Virginia Tech)
---
最新提交年份:
2007
---
分类信息:
一级分类:Quantitative Biology        数量生物学
二级分类:Subcellular Processes        亚细胞过程
分类描述:Assembly and control of subcellular structures (channels, organelles, cytoskeletons, capsules, etc.); molecular motors, transport, subcellular localization; mitosis and meiosis
亚细胞结构(通道、细胞器、细胞骨架、囊膜等)的组装和控制;分子马达;转运;亚细胞定位;有丝分裂和减数分裂
--
一级分类:Physics        物理学
二级分类:Statistical Mechanics        统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
一级分类:Quantitative Biology        数量生物学
二级分类:Quantitative Methods        定量方法
分类描述:All experimental, numerical, statistical and mathematical contributions of value to biology
对生物学价值的所有实验、数值、统计和数学贡献
--
---
英文摘要:
  In this article, we study the kinetics of reversible ligand binding to receptors on a spherical cell surface using a self-consistent stochastic theory. Binding, dissociation, diffusion and rebinding of ligands are incorporated into the theory in a systematic manner. We derive explicitly the time evolution of the ligand-bound receptor fraction p(t) in various regimes . Contrary to the commonly accepted view, we find that the well-known Berg-Purcell scaling for the association rate is modified as a function of time. Specifically, the effective on-rate changes non-monotonically as a function of time and equals the intrinsic rate at very early as well as late times, while being approximately equal to the Berg-Purcell value at intermediate times. The effective dissociation rate, as it appears in the binding curve or measured in a dissociation experiment, is strongly modified by rebinding events and assumes the Berg-Purcell value except at very late times, where the decay is algebraic and not exponential. In equilibrium, the ligand concentration everywhere in the solution is the same and equals its spatial mean, thus ensuring that there is no depletion in the vicinity of the cell. Implications of our results for binding experiments and numerical simulations of ligand-receptor systems are also discussed. 
---
PDF链接:
https://arxiv.org/pdf/708.4065