全部版块 我的主页
论坛 经济学人 二区 外文文献专区
323 0
2022-03-07
摘要翻译:
我们考虑一个无性种群在多维基因型空间上定义的崎岖适应度景观上进化,并具有许多局部最优解。我们跟踪人口最多的基因型,当人口在适应过程中从适应高峰跳到更好的适应高峰时,它的变化。这是用壳模型的动力学来完成的,壳模型是无限种群的准种模型的简化版本,而标准的赖特-费雪动力学用于大的有限种群。我们证明了在准种模型和shell模型中得到的基因型群体分数在短时间内对适合的基因型是匹配的,但在与最多人口基因型有关的问题上,两个模型的动力学是相同的。我们精确地计算了无穷总体中跳跃的几个性质,其中一些性质是在前人的工作中得到的。我们也给出了有限种群的初步模拟结果。特别地,我们测量了跳跃分布在时间上的分布,发现它和准种问题一样衰减为$t^{-2}$。
---
英文标题:
《Evolutionary dynamics of the most populated genotype on rugged fitness
  landscapes》
---
作者:
Kavita Jain
---
最新提交年份:
2007
---
分类信息:

一级分类:Quantitative Biology        数量生物学
二级分类:Populations and Evolution        种群与进化
分类描述:Population dynamics, spatio-temporal and epidemiological models, dynamic speciation, co-evolution, biodiversity, foodwebs, aging; molecular evolution and phylogeny; directed evolution; origin of life
种群动力学;时空和流行病学模型;动态物种形成;协同进化;生物多样性;食物网;老龄化;分子进化和系统发育;定向进化;生命起源
--
一级分类:Physics        物理学
二级分类:Statistical Mechanics        统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--

---
英文摘要:
  We consider an asexual population evolving on rugged fitness landscapes which are defined on the multi-dimensional genotypic space and have many local optima. We track the most populated genotype as it changes when the population jumps from a fitness peak to a better one during the process of adaptation. This is done using the dynamics of the shell model which is a simplified version of the quasispecies model for infinite populations and standard Wright-Fisher dynamics for large finite populations. We show that the population fraction of a genotype obtained within the quasispecies model and the shell model match for fit genotypes and at short times, but the dynamics of the two models are identical for questions related to the most populated genotype. We calculate exactly several properties of the jumps in infinite populations some of which were obtained numerically in previous works. We also present our preliminary simulation results for finite populations. In particular, we measure the jump distribution in time and find that it decays as $t^{-2}$ as in the quasispecies problem.
---
PDF链接:
https://arxiv.org/pdf/706.0406
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群