摘要翻译:
本文讨论了线性波动性Heath-Jarrow-Morton方程解的存在性问题。给出了弱解和强解存在的必要条件和充分条件。结果表明,拉普拉斯指数的对数增长条件起着关键作用。
---
英文标题:
《Heath-Jarrow-Morton-Musiela equation with linear volatility》
---
作者:
Michal Barski, Jerzy Zabczyk
---
最新提交年份:
2010
---
分类信息:
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
一级分类:Quantitative Finance 数量金融学
二级分类:Pricing of Securities 证券定价
分类描述:Valuation and hedging of financial securities, their derivatives, and structured products
金融证券及其衍生产品和结构化产品的估值和套期保值
--
---
英文摘要:
The paper is concerned with the problem of existence of solutions for the Heath-Jarrow-Morton equation with linear volatility. Necessary conditions and sufficient conditions for the existence of weak solutions and strong solutions are provided. It is shown that the key role is played by the logarithmic growth conditions of the Laplace exponent.
---
PDF链接:
https://arxiv.org/pdf/1010.5808