全部版块 我的主页
论坛 经济学人 二区 外文文献专区
530 0
2022-03-08
摘要翻译:
我们考虑一个Markov过程$x$,它是由L\'{e}vy过程$z$和独立的Wiener过程$w$驱动的随机微分方程的解。在一定的正则性条件下,包括扩散分量和跳跃分量的非简并性,以及在原点的任意邻域外的L{e}vy密度$z$的光滑性,我们得到了尾分布和跃迁密度$x$的一个小时间二阶多项式展开式。我们的证明方法结合了一种新的用于推导L{e}vy过程模拟小时间展开式的正则化技术和基于Malliavin微积分理论、SDEs的微分同态流和时间可逆性的具有小跳跃的跳跃-扩散过程的一些新的尾和密度估计。作为应用,本文还导出了局部跳扩散模型下短期货币外期权价格的先导项。
---
英文标题:
《Small-time expansions for local jump-diffusion models with infinite jump
  activity》
---
作者:
Jos\'e E. Figueroa-L\'opez, Yankeng Luo, Cheng Ouyang
---
最新提交年份:
2014
---
分类信息:

一级分类:Mathematics        数学
二级分类:Probability        概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
一级分类:Quantitative Finance        数量金融学
二级分类:Computational Finance        计算金融学
分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling
计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模
--

---
英文摘要:
  We consider a Markov process $X$, which is the solution of a stochastic differential equation driven by a L\'{e}vy process $Z$ and an independent Wiener process $W$. Under some regularity conditions, including non-degeneracy of the diffusive and jump components of the process as well as smoothness of the L\'{e}vy density of $Z$ outside any neighborhood of the origin, we obtain a small-time second-order polynomial expansion for the tail distribution and the transition density of the process $X$. Our method of proof combines a recent regularizing technique for deriving the analog small-time expansions for a L\'{e}vy process with some new tail and density estimates for jump-diffusion processes with small jumps based on the theory of Malliavin calculus, flow of diffeomorphisms for SDEs, and time-reversibility. As an application, the leading term for out-of-the-money option prices in short maturity under a local jump-diffusion model is also derived.
---
PDF链接:
https://arxiv.org/pdf/1108.3386
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群